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Abstract
After discussing the difficult conflict between stiffness and density in producing professional-quality bows, we de-
rive the new taper required to produce the same local stiffness as the target bow from a blank of possibly different 

modulus of elasticity. Furthermore, we prove that by selecting wood with the same value of the parameter µ
ρ

=
E
2
 

as the target bow, both the mechanical bending and mass properties between the head and forward frog position 
of the target can be reproduced exactly. This parameter then serves as a general basis for wood selection, replacing 
the speed of sound measurement, shown to penalize the value of lower density wood while inflating that of higher 
density. In outlining a procedure for reverse engineering, modeling of the target bow, geometry and methods for 
estimating the modulus and density of bow or blank are presented together with a derivation of the associated 
camber and its relationship to maximum hair tension and proximity to full camber. The Tourte taper is discussed 
with particular emphasis on its close approximation to linear stiffness as a function of position along the stick. 
Using a linearized stiffness model of a particular bow by Dominique Peccatte, tapers are presented for two blanks 
with the same value of μ, having significantly different modulus and density, but with each reproducing the same 
local stiffness and mass properties between the head and frog. Stiffness plots of four bows that reproduce the same 
linearized local stiffness are shown together with that of the Peccatte. Data on modulus, density, and damping 
ratio from a sample of 50 violin bow blanks is also presented, demonstrating the implicit problem with wood 
selection based on speed of sound.

1. INTRODUCTION

The fundamental problem in producing 
professional-quality bows for string instruments 
lies in coping with the conflict between wood 
stiffness and density. Although high wood stiff-
ness helps in achieving the desired mechanical 
bending properties of the bow, higher density 
only adds weight, making it more difficult to 
satisfy the typical desired weight and moment 
properties in a finished bow. While the contribu-
tion to the weight of a cross section is uniform, 
the resulting stiffness is proportional to the 
cross-sectional moment of inertia, dependent on 
the square of the distance of the mass from the 
bending axis. The wood toward the surface of 
the cross section contributes more to the stiff-
ness than the wood toward the center. There-
fore, while any wood could be used to achieve 

the necessary stiffness by leaving it thicker, most 
would greatly exceed the typical weight con-
straints. Historically, this has led to Pernam-
buco as the wood of choice for modern bows. It 
is well-known [1,2] that Pernambuco of higher 
modulus typically has higher density and this 
property has caused blanks of higher modulus 
and density to be viewed as always more desir-
able, and regarded “floaters,” specific gravity 
less than one, as wood not capable of produc-
ing high-quality bows. Furthermore, because of 
the delicate balance between mass and stiffness 
in bow design, a current belief [3] among bow-
makers is that it is only possible to either build 
in the needed stiffness by taper design or achieve 
the desired mass properties, but not both.

In what follows, we prove that both the 
desired stiffness and mass properties of the bend-
ing section of the bow can be reproduced exactly 
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through wood selection based on the parameter 

µ
ρ

=
E

, 2 where E is the modulus of elasticity 

and ρ is the specific gravity, providing identical 
units for both E and μ. This results in wood with 
the same value of μ being completely equiva-
lent in producing a bow with the same bending, 
mass, and moment properties between the head 
and frog and serves as the basis for reverse engi-
neering a desired finished bow. Furthermore, this 
elevates the value of some floaters to the equal of 
their more dense alternatives. Although estimates  
for wood properties are usually based on the 
simplifying assumption that they are constants, 
clearly they are very likely to change as wood 
is removed in producing a finished bow. There-
fore, the procedure presented here is an iterative 
one, repeatedly estimating the properties of the 
wood that remains as some wood is removed 
and modifying the target taper accordingly.

2. GENERAL DESCRIPTION
This analysis for reverse engineering of bows 
for string instruments is based on the realiza-
tion that, for given frog and head heights, the 
mechanical bending properties of a bow are 
completely determined by the modulus of elas-
ticity and cross-sectional moment of inertia as 
functions of position along the stick, together 
with the initial camber at zero tension in the 
hair. This requires solving the problem of design-
ing the taper in a given piece of wood that will 
reproduce the same local stiffness as the desired 
target bow as a function of position along the 
stick. Given the complexity of any alternative, 
we have made the simplifying assumption that 
both the modulus of elasticity and density are 
constants. The geometry of the target bow is 
obtained using a model of the cross-sectional 
shape from graduation measurements, pro-
ducing representations of the cross-sectional 
area and moments of inertia as a function of 
arc length along the stick. In a simple cantile-
ver static deflection experiment with the bow 
clamped at the forward frog position and a small 
vertical load just behind the head, the measured 
deflection then determines the average modulus 
of elasticity necessary to produce that deflection 
given the modeled geometry of the bow.

The mass of the stick together with the loca-
tion of the center of mass gives two equations 
solved for the density and estimate of the vol-
ume of the head. In a finished bow, this approach 
also requires estimating the mass and center of 
mass of the wrapping above the frog, together 
with the model of the frog section.

The conventional wisdom among bowmak-
ers has been that tightening the hair in a bow 
should simply have the effect of gradually undo-
ing the camber, eventually resulting in the stick 
reaching a straight line at maximum tension in 
the hair. While this level of tension is usually 
never used in actual playing, this design concept 
seems reasonable and has been incorporated 
here. This assumption together with an analy-
sis of the tapered curved beam boundary value 
problem then establishes a unique relationship 
between the taper and camber, where the appro-
priate camber defined by the maximum desired 
tension in the hair, is computed directly from the 
designed taper and modulus of elasticity, while 
respecting the maximum camber constraint for 
the effective frog and head heights.

Although designing the taper in a blank that 
reproduces the desired local stiffness in a tar-
get bow is necessary in any reverse engineering 
strategy, coping with likely different mass dis-
tribution from a new taper in a blank with dif-
ferent density complicates the problem. In what 
follows, a wood selection parameter, computed 
from the modulus of elasticity and specific grav-
ity, completely solves this problem, reproducing 
the weight and important moment properties of 
the bending section of the bow. Furthermore, this 
parameter provides the basis for wood selection 
leading to the most successful outcome.

3. TAPER
Measuring the arc length s of the stick from a 
point just behind the head, the stiffness or flex-
ural rigidity at a given value of s is the product of 
the modulus of elasticity and the cross-sectional 
moment of inertia. In designing the taper for a 
blank of modulus Eb to realize the same local 
bending properties as a desired target bow with 
modulus Et, the local stiffness of the target as a 
function of s must be reproduced. While knowl-
edge of the taper in the target bow is necessary, 
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it is in general, not the taper to be used in the 
new design. For example, for a circular cross 
section of diameter D and modulus E, the stiff-
ness is given by

	
π

=EI
ED
64

4

� (1)

If the target bow has modulus Et and the blank 
has modulus Eb, the diameter of the target taper 
must be multiplied by the same factor at every 
point to realize the local stiffness of the target 
from the wood in the blank with a different 
modulus. For the new taper defined by

	 =








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E
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t
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its stiffness is then given by

	
π π
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4
t t
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The important conclusion drawn from this is 
that a difference in modulus between blank and 
target requires a different taper in the blank and 
not simply the same taper with different overall 
thickness, to achieve the same local stiffness as 
the target bow. This approach provides knowl-
edge of the starting taper to be used in roughing 
out a particular blank and offers a workable 
successful outcome for blanks of lower modu-
lus and density. For example, in the case where 
Eb < Et, the multiplying factor is greater than 
one and will cause more wood to be added to 
the target diameter as its diameter increases. 
Such a blank might be made useless by starting 
with a taper more suitable in a stronger blank.

The mass properties of the bow are determined 
by the cross-sectional area, A s( ) as a function of 
arc length along the stick measured from just 
behind the head and computed from the taper, 
with its corresponding mass per unit length 
ρA s  ( ). The weight of the stick between the head 
and the forward frog position and its important 
moments with respect to that position are then 
given by

	 ∫ρ′ =w A s ds( )
L

0

s

 � (4)

	 ∫ρ′ =m x s A s ds( ) ( )
L

m
0

s

 � (5)

	 ∫ρ′ =i x s A s ds( ) ( )
L

m
2

0

s

 � (6)

where, Ls is the arc length of the stick between 
the head and the forward frog position and 
( )x sm  is the horizontal moment arm for the 

cross section at s with respect to the forward 
frog position. The horizontal location of the 
center of mass of the bending section of the bow 
from the forward frog position then follows 
from Eqns. (4) and (5).

	 =
′
′

cm
m
w

. � (7)

While the stiffness in Eqn. (1) is proportional 
to D4, the mass and the moments with respect to 
the forward frog position are only proportional 
to D2, accounting for the mysterious conflict 
between stiffness and density.

4. WOOD SELECTION
Given the desired playing properties in a pro-
fessional-quality bow, the conflict between 
stiffness and density, places difficult demands 
on wood selection. While the contribution to 
weight of a cross section is uniform, the stiffness 
is proportional to the cross-sectional moment 
of inertia, dependent on the square of the dis-
tance of the mass from the bending axis. The 
wood toward the surface of the cross section 
contributes more to the stiffness than the wood 
toward the center. Therefore, while any wood 
could be used to achieve the necessary stiffness 
by leaving it thicker, most would greatly exceed 
the typical weight constraints, historically lead-
ing to Pernambuco as the wood of choice for 
modern bows.

As shown in Eqn. (3), the local stiffness of 
a target bow with taper Dt can be reproduced 
from a blank of a different modulus of elasticity 
Eb from the taper obtained by multiplying the 

target taper by the constant, 










E
E

t

b

1
4

. While this  

is a necessary condition in reverse engineering a 
target bow, the weight, moment, and moments 
of inertia of the resulting bow must deal with the 
corresponding difference in densities between  
blank and target. For Pernambuco of modulus 
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of elasticity E and density ρ , we define the 
parameter μ given by

	 µ
ρ

=
E
2  � (8)

Viewing density in its equivalent dimensionless 
form of specific gravity, μ can conveniently be 
represented with the same units as the modulus 
of elasticity. For a target bow and blank with 
the same value of μ, this results in the condition

	
ρ
ρ
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Using the blank taper Db in Eqn. (2) that pro-
duces the same local stiffness as the target, the 
cross-sectional area is transformed by the square 
of the same factor.
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From this, it follows that the mass per unit 
length, together with both the weight and 
moments of the blank taper between the head 
and forward frog position, are identical to those 
of the target.

	 ρ ρ=A Ab b t t � (11)
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We now have the remarkable result that when a 
blank is selected with the same value of μ as the 
target bow, both the local stiffness and all mass 
properties of the target between the head and 
forward frog position are reproduced exactly 
using the computed taper D  b in Eqn. (2). This 
demonstrates that blanks with the same value 
of μ are completely mechanically equivalent 

in terms of their possible stiffness and weight 
properties between the head and frog in a fin-
ished bow. The differences in cantilever mode 
frequencies between the blank taper and target 
taper are then completely determined by the dif-
ferences in the heads of the two bows. The fun-
damental mode frequency can then be tuned by 
adjusting the head shape without modifying the 
important effective head height, to compensate 
for the possible different density of the blank. 
For a blank with lower density than the target, 
a small mass could simply be added without the 
need to change the head shape. The total weight 
and balance properties of the finished bow  
are then managed by grip, frog, and button 
selection.

From a sample of 50 violin bow blanks, the 
process described in Sections 5 and 6 was used 
to determine estimates for their modulus and 
density and plotted in Fig. 1 together with a lin-
ear least squares fit, demonstrating the expected 
increasing trend in their relationship. The color 
of the points map their corresponding values of 
μ to a light-to-dark color map, with light the 
smallest and dark the largest values. With points 
of similar shades having similar values of μ, 
clearly some lower density and modulus blanks 
are really competitive with their typically more 
prized higher density alternatives.

Given the interest in the speed of sound as a 
basis for wood selection, its relationship to the 
modulus and density [2,4] is given by

	
ρ

=c
E

 � (15)

Since the square root function is monotonic, 
this is equivalent to screening the wood on the 
basis of c2, easily expressed in terms of the wood 
selection parameter μ and density ρ given by

	 ρ µ=c  2  � (16)

Having shown that μ is the definitive mea-
sure of the mass and stiffness outcome between 
the head and the frog, wood selection based 
solely on the speed of sound, inflates the value 
of high-density wood, ρ>1, while penalizing 
wood of low density and leads to the false per-
ception that all “floaters” are worthless. Com-
puting c from Eqn. (15), this misconception is 
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illustrated in Fig. 2 by the following analogous 
plot with the increasing values of the speed 
of sound mapped light-to-dark, clearly reduc-
ing interest in lower modulus and lower density 
wood given higher concentration of darker points 
among higher density blanks.

This implicit bias of wood selection based 
on velocity of sound is further demonstrated 
by the following scatter plots in Figs. 3 and 4 

of µ ρ( ) and ρc( ) and their respective linear least 
squares trend lines. The range of values of μ is on 
the interval [16.6, 26.4], with the range of c on 
[4237, 5239]. The colors of the points have been 
preserved and the vertical sizes of the plots were 
adjusted to represent each vertical range with 
same length on the page.

The significantly steeper slope of the lin-
ear trend line in ρc( ) demonstrates the implicit 

Figure 1. Variation of modulus with specific gravity and including light-to-
dark point shade mapped to increasing values of the parameter μ on the 
interval (16.65, 26.38).

Figure 2. Variation of modulus with specific gravity and including light to 
dark point shade mapped to increasing values of the speed of sound, c on 
the interval (4237, 5239) in m/s.
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penalty against lower density wood based  
on speed of sound measurements when com-
pared with the more accurate wood selection 
parameter μ.

Since the chances of making a high-quality  
bow are improved by either increasing the  

modulus or decreasing the density, it is obvious 

that blanks with the largest values of µ
ρ

=
E
2   

are the most desirable for the possible mechan-
ical outcome and should generally be the basis 
of wood selection. As shown in Section 5, it is 

Figure 3. Plot of µ ρ( ) together with its least squares linear trend line.

Figure 4. Plot of ρc( ) together with its least squares linear trend line.
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noteworthy [5] that the wood at the corners of 
an octagonal cross section given their greater 
distance from the neutral axis, offers an edge to 
the possible outcome for octagonal bows given 
the same piece of wood.

5. CROSS-SECTIONAL SHAPE
The local stiffness of a beam at any point is 
proportional to the cross-sectional moment of 
inertia, or second moment of the area about 
a bending axis. While for a straight beam the 
neutral axis is typically through the centroid 
of the cross section, this is not the case for 
curved beams [6] and it is dependent on the 
local curvature. Since the actual curvature in a 
bow is relatively small, it is likely that the cross 
section centroid is close to the neutral axis. 
Therefore, the effective head and frog heights 
can be approximated by distance of the line of 
action of the hair from the centroid of the cross  
section.

Moments of inertia and area of the simple 
shapes of a circle and rectangle in Figs. 5 and 6 
are easily found as given by

	
π π

= = =I I
D

A
D

64
,

4x y

4 2

 � (17)
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While the rectangular shape is useful in mod-
eling a typical bow blank, the case of either an 
“octagonal” or “round” bow is more compli-
cated. Furthermore, these descriptions are only 
qualitative and, therefore, a geometric model of 
the bow must account for the actual possibly 
somewhat “oval” nature of the cross-sectional 
shapes. To that end, the case of a symmetric 
octagon in Fig. 7 can be represented using four 
different thicknesses around the stick, V, U, H, 
and L. Straightforward but somewhat tedious 
integration yields the moments of inertia and 
cross-sectional area given by

	

I
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Figure 5. Round cross section.

Figure 6. Rectangular cross section.
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For a regular octagon of thickness D, these 
reduce to

	
( )
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It is noteworthy that comparison of the regular 
octagon and round cross sections shows that, 
while the octagonal area increases by a factor 
of 1.055, the cross-sectional moment of inertia 
is increased by a factor of 1.115, accounting for 
the advantage of the octagonal cross section in 
dealing with blanks of lesser quality.

For the “round” case in Fig. 8, rather than 
use an ellipse or some other constrained shape 
to represent the somewhat oval cross section in 
real bows, we again measure the thickness at 
four equidistant angles around the stick, V, U, 
H, and L.

Assuming symmetry, a periodic cubic spline 
is then fitted to this graduation data to obtain 
a representation of the stick diameter, λD( ), 
as a function of the angle λ , measured clock-
wise positive from a vertical line through the 
centroid and looking toward the head. Direct 
integration in polar coordinates then gives 
the vertical and horizontal moments of iner-
tia, Ix and Iy , together with the cross-sectional  
area A.
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6. MODULUS OF ELASTICITY
For either a bow blank, partly finished or actual 
finished bow, the average modulus of elasticity 
in the vertical plane is obtained by a simple 

Figure 8. Oval cross section.

Figure 7. Octagonal cross section.
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cantilever static deflection experiment [7] with 
the stick clamped at the frog end, and the arc 
length σ, measured from the clamped position 
as shown in Fig. 9.

From this formulation in terms of the tan-
gent angle ∅ with initial camber ∅0 as functions 
of arc length σ, the strain energy U for this elas-
tic and conservative system [6,8,9] is given by

	 ∫ ∅ ∅ σ= ′− ′U
EI

d
2

( )
M

0
0

2

 � (26)

Since the vertical Cartesian coordinates for the 
final and initial positions of the end at the point 
load are in the form

	 ∫ ∫∅ σ ∅ σ= =y d y dsin sin
M M

0
0 0

0
, � (27)

the deflection δ under the point load F is then 
found as δ = −y y0. The potential energy Ω of 
the external load is then given by

	 Ω =− −F y y( )0  � (28)

Employing the principle of stationary potential 
energy on total potential energy ΩΠ= +U

	 δΠ = 0 � (29)

yields the nonlinear boundary value problem

	 ∅ ∅ ∅( )′− ′




′ + =EI F cos 00  � (30)

	 ∅ ∅ ∅( )( )= ′− ′



 =
σ=

EI0 0, 0
M0  � (31)

with the constant modulus E, and the cross-
sectional moment of inertia σ( )I  under the 
action of the point load F.

Modeling the cross-sectional shape using 
methods specific to rectangles, octagons, or 
curves as appropriate, graduation measurements 
at 20-mm intervals along the stick are then used 
to compute a spline model of the moment of 
inertia σ( )I  as a function of σ. The initial camber
∅0 is simply zero for a straight bow blank or 
roughed out bow, or assumed to be the camber 
that is undone by tightening the hair in a fin-
ished bow. While this may not be precisely true 
in every case, the errors in this assumption are 
likely to be small.

With the bow clamped at the forward frog 
position and a small magnet on the head of the 
bow behind the mortise, a linear Hall-effect trans-
ducer mounted vertically on an x–y microscope 
stage and dial indicator resting on the stage, are 
used to measure the deflection of the stick under 
the applied load F. An estimate for the average 
Young’s modulus E in the vertical plane is then 
obtained by embedding the above boundary value 
problem inside a root finding algorithm, thereby 
computing the value of E that gives the measured 
deflection given the geometry modeled from the 
measured graduation data. This was computed 
using a Picard [10] iteration algorithm in Scilab 
and this process applied to a target bow provides 
an estimate for its average modulus Et.

The mass of the stick together with the loca-
tion of the center of mass gives two equations, 
solved for the density and estimate of the vol-
ume of the head. In a finished bow, this approach 
requires estimating the mass and center of mass 
of the wrapping above the frog, together with 
the model of the frog section. Alternatively, 
measurement of the speed of sound could  
also be used to estimate the density ρ from the  
modulus E but measurement error is approxi-
mately doubled because of the square of the speed.

Figure 9. Cantilever at forward frog position.
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7. MODEL OF TARGET BOW
Although bows are either round or octagonal, 
historically, sometimes the cross section is made 
taller than it is wide producing more stiffness in 
the vertical plane to compensate for a weaker 
piece of wood but likely at the expense of lateral 
stiffness. Therefore, an actual round model equiv-
alent to the target bow vertical plane stiffness is a 
better choice as the basis for the taper design.

With arc length s along the stick measured 
from just behind the head, these area moments 
of inertia are computed at 20-mm intervals and 
spline models produce the functions of arc length, 
( )I sx  and ( )I s .y  Using only the vertical plane area 

moment of inertia for a round cross section in 
Eqn. (17), we obtain an equivalent actual round 
model of the target bow taper given by

	 σ
π

=
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An analogous equivalent regular octagonal 
model can also be computed from Eqn. (22) 
if preferred, especially in the case of blanks of 
smaller values of μ.
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Since the stick is octagonal in the frog sec-
tion, modeling a round bow requires a small 
transition region, typically under the winding, 
between the round and octagonal cross-sectional 
area and moment of inertia.

8. CAMBER
The conventional wisdom among bowmakers 
is that the ideal camber is that which is sim-
ply undone by tightening the hair, resulting in 

a straight line for the bow. The static bending 
problem under tensioning of the hair shown 
in Fig. 10 can be analyzed using an analogous 
formulation with arc length parameter s, tangent 
angle θ( )s , initial camber θ ( )s0 , bow arc length 
LT to the frog under hair tension T, and effective 
head and frog heights a and b, respectively. It 
is important to note that a and b are distances 
of the hair tension from the neutral axis of the 
bow and not the actual heights of the head and 
frog. Since the frog moves back from its forward 
position in this analysis, the origin of arc length 
is now chosen at a point behind the head.

The strain energy U for this elastic and con-
servative system [6,8,9] is given by

	 ∫ θ θ= ′− ′U
EI

ds
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2
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with the potential energy Ω of the external load 
in the form

	 Ω=− −T l l( )0  � (35)

where,

 ∫θ θ θ( ) ( )= − +l b sin L a s ds    sin (0) cos
L

T
0

T

 �(36)

The total potential energy is then ΩΠ= +U , and 
employing the principle of stationary potential 
energy,

	 δ Π=  0 � (37)

yields the nonlinear boundary value problem

	 θ θ θ( )′− ′




′ + =EI T sin 00  � (38)

	 θ θ θ( ) ( )′− ′



 + =
=

EI Ta cos 0 0
s0 0

 � (39)

	 θ θ θ( ) ( )′− ′



 + =
=

EI Tb Lcos 0
s L0 T

f

 � (40)

Figure 10. Static bending under hair tension.
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While this is a difficult nonlinear problem, it 
can be used to reveal the intimate and unique 
relationship between the taper and the camber 
provided by the conventional wisdom assump-
tion. This straight line assumption means that 
there must exist a maximum tension T and a 
frog location LS such that the solution to the 
abovementioned problem is θ β( )=s  a constant. 
From Eqn. (38), it follows that

	 θ β′ 
′ =EI T  sin0  � (41)

Direct integration with respect to s gives

	 θ β′ = +EI T cs sin0 � (42)

where, β=c Ta cos  and β =
−b a
L

tan
S

 follow 

from the boundary conditions. Solving for the 
curvature θ′0, we then have

	 θ
β β

( )
( )

( )
′ =

+
s

T a

EI s

s sin cos
0  � (43)

It is noteworthy that in the trivial special case 
of constant cross-sectional moment of inertia I  
and identical head and frog heights, β = 0 and 
the curvature θ ( )′ s0  is a constant as expected.

	 θ ( )′ =s
Ta
EI0  � (44)

A quadrature expression for the camber is then 
given by

	 θ θ( ) ( ) ( )= +s g s 00 0  � (45)

where,

	 ∫
β β

( )
( )

( )
≡

+
g s

T a

EI s
ds

s sin coss

0
 � (46)

Furthermore, with the definitions

 ∫ ∫( ) ( ) ( ) ( )≡ ≡u s g s ds v s g s dssin cos
s s

0 0
, � (47)

it can be shown that

	 θ ( )
( ) ( )

( ) ( )
=

− −
+













− b g L u L a

v L b g L
0 tan

cos

sin0
1 T T

T T

 
� (48)

The Cartesian coordinates for the camber of the 
neutral axis are then found in the form

	
x s s ds

v s u s

s

0 0
0

0 00 0

( )= ( )

= ( ) ( )− ( ) ( )
∫ cos

cos sin

θ

θ θ
 � (49)

	

y s s ds a

u s v s

a

s

0 0
0

0

0 0

0

0 0

( )= ( ) + ( )

= ( ) ( )+ ( ) ( )
+

∫ sin cos

cos sin

c

θ θ

θ θ

oosθ0 0( )
� (50)

The maximum tension, T, when the bow is 
straight, is controlled by the amount of cam-
ber, with full camber defined by the bottom of 
the stick touching the table for the given frog 
and head heights at the point =s L0. It is easily 
shown that the two unknowns T and L0 can be 
obtained from the two constraint equations

	 θ θ( ) ( ) ( )= + =L g L 0 00 0 0 0  � (51)

 
y L u L v L

a
V L

0 0 0 0 0 0

0
0

0 0

0
2

( )= ( ) ( )+ ( ) ( )

+ ( )= +

cos sin

cos
( )

θ θ

θ ε
 � (52)

where, V L( )0  is the vertical thickness of the stick 
at L0 and ε is the distance between the bottom 
of the stick and the table.

9. TOURTE TAPER
It is well-known that the taper in Tourte bows, 
as modeled by Vuillaume [11], has the interest-
ing property that the stiffness as a function of 
position in the bow closely approximates a lin-
ear function [12]. While not yet understood, 
this really has some intuitive appeal and is sup-
ported by several bows for which I was able to 
measure both the graduations and estimate the 
modulus in the cantilever experiment. Although 
my analysis now uses four measurements around 
the stick to model the cross-sectional shape, 
the plots shown in Figs. 11 and 12 are from an 
earlier effort when only horizontal and vertical 
graduation data were taken, using an ellipse to 
model the cross-sectional shape. Both the vertical 
and horizontal stiffness are shown, with the 
linear stiffness over much of the stick clearly 
evident, particularly in the Peccatte. The more 
oval cross-sectional shape in the Tourte contrib-
uted to its somewhat excessive lateral flexibility.  
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While utilizing such an oval design gains more 
vertical strength, lateral problems can be mini-
mized by using a round cross section derived from 
the vertical stiffness as described in Section 7.

Estimates for the modulus and density of 
the Tourte are 27.8 GPa and 1.12 g/cm3 with µ 
equal to 22.1.

Estimates for the modulus and density of the 
Peccatte are 27.2 GPa and 1.07 g/cm3 with µ equal 
to 23.9. A difficult and poor estimate of gradua-
tions under the grip probably accounts for the odd 
variation near the frog. My four most recent bows 
are based on a linearized stiffness model of this 
Peccatte shown above, and plotted in Fig. 13 with 

Figure 11. Local stiffness and graduations as functions of arc length for bow 
by Tourte.

Figure 12. Local stiffness and graduations as functions of arc length for 
bow by Peccatte.

Figure 13. Local stiffness of Peccatte in red, together with four bows of 
similar design.
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the Peccatte in red and the others with values of µ 
equal to 22.1, 24.5, 25.7, and 26.5 in GPa.

With E and μ in GPa, consider the bow 
blanks A and B selected from those in Figs. 1 
and 2 with the following properties:

Although A is a floater, with both modulus and 
density considerably smaller than B, their values 
of μ are virtually identical. Round tapers shown 
in Fig. 14 and listed in Table 2 were designed for 
both A and B such that each reproduces the linear-
ized local stiffness model of the Peccatte.

The decrease in diameter in approaching the 
forward frog position is a result of the gradual 
linear conversion from round to octagonal for 
the frog section. The increasing cross-sectional 
moment of inertia over a round section allows 
their diameter to gradually decrease, while still 
maintaining linearly increasing stiffness. For a 
regular octagonal bow, the diameter continues 
to increase to produce linear stiffness to the frog. 
From the comparison between round and octag-
onal cross sections in Section 5, an octagonal 
bow, with the same local stiffness function as 

a round alternative, will be about 5.3% lighter 
between the head and frog.

The head and frog heights were carefully 
chosen so that their effective moment arms 
relative to the neutral axis were very close in 
value and the resulting bows are assumed fully 
cambered. Using the geometry defined by these 
graduations, notwithstanding their different 
densities and tapers, the computed mass of the 
sections between the head and frog in Eqn. (12) 
are nearly identical,

	 ′ = ′ =w w30.49 30.51,A B  � (53)

demonstrating that blanks with the same value 
of μ can reproduce both mass and local stiffness 
between the head and frog of a desired target with 
proper taper design. The floater A is the equal of 
the more typically prized higher density B. The 
differences in the cantilever mode frequencies can 
then be reduced or possibly eliminated by care-
ful tuning of the head shapes, with that of higher 
density B likely smaller than A. The remaining 
total weight and balance issues then depend on 
the selections of grip, frog, and button.

10. DAMPING RATIO
Any player knows that in going through a box of 
bows, some will be louder than others and also 
produce different harmonic content from the 
same instrument. Although the vibrating mode 

Figure 14. Round graduations for blanks A and B as functions of arc 
length between the head and forward frog position. A dashed, B solid.

Table 1. E and μ in GPa, ρ as specific gravity 
and c in m/s.

E ρ μ c

A 22.8 0.96 25.04 4890

B 31.3 1.12 25.01 5288
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Table 2. Round graduations in mm for blanks A and B, together with their local stiffness and 
that of the linearized Peccatte model.

Floater Sinker Linearized Peccatte

s DA EA IA DB EB IB Stiffness Model

0 5.59 111.29 5.16 111.29 111.07

20 5.86 134.41 5.41 134.41 134.15

40 6.09 157.53 5.63 157.53 157.22

60 6.31 180.64 5.83 180.65 180.29

80 6.50 203.76 6.01 203.76 203.36

100 6.68 226.87 6.17 226.88 226.43

120 6.84 249.99 6.32 250.00 249.50

140 6.99 273.11 6.46 273.11 272.58

160 7.14 296.22 6.60 296.23 295.65

180 7.27 319.34 6.72 319.35 318.72

200 7.40 342.46 6.84 342.47 341.79

220 7.52 365.57 6.95 365.58 364.86

240 7.64 388.69 7.06 388.70 387.93

260 7.75 411.81 7.16 411.82 411.00

280 7.85 434.92 7.26 434.93 434.08

300 7.96 458.04 7.35 458.05 457.15

320 8.06 481.16 7.45 481.17 480.22

340 8.15 504.27 7.53 504.28 503.29

360 8.24 527.39 7.62 527.40 526.36

380 8.33 550.51 7.70 550.52 549.43

400 8.42 573.62 7.78 573.64 572.50

420 8.50 596.74 7.86 596.75 595.58

440 8.58 619.86 7.93 619.87 618.65

460 8.66 642.97 8.01 642.99 641.72

480 8.74 666.09 8.08 666.10 664.79

500 8.81 689.21 8.15 689.22 687.86

520 8.89 712.32 8.21 712.34 710.93

540 8.96 735.44 8.28 735.46 734.00

560 9.03 758.56 8.34 758.57 757.08

580 9.09 781.67 8.41 781.69 780.15

600 9.11 804.79 8.42 804.81 803.22

620 9.07 827.90 8.38 827.92 826.29

639 9.04 849.87 8.35 849.88 848.21
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frequencies of the bow are of course involved, 
the inherent damping of the wood in the bow is 
also an important factor in the outcome.

The same cantilever setup used to measure 
the modulus of elasticity [7] in Section 6 was 
also used to estimate the damping ratio by 
exciting free vibration in the vertical plane and 
sampling the exponentially decaying sinusoi-
dal signal in Fig. 15 at 8 kHz for 4 s. While this 
can be difficult in a finished bow because of 
very close vertical and horizontal fundamental 
mode frequencies, a blank, especially if rectan-
gular, is usually more successful. Nevertheless, 
for a finished bow clamped at the forward frog 
position, analysis of the data can estimate the 
fundamental mode frequency useful in the sub-
sequent head design.

For damped, free vibration, the response 
can often be approximated by an exponentially 
decaying sinusoid [13] of the form

	 ω ζ ϕ( )= − + +ζω−v X e t Xsin 1t
0 n

2
1

n  � (54)

with natural angular frequency ωn and damping 
ratio ζ. Although ζ can be approximated by the 
method of logarithmic decrement [13], here we 
need estimates of both ζ and the damped natural 
angular frequency ωd given by

	 ω ω ζ= −1 .d n
2  � (55)

After approximating ζ using logarithmic dec-
rement as an initial value in the optimization, 
the model in Eqn. (54) or a sum of two such 
models is fitted in a least squares sense for the 
decay constant ζωn, ωd and the other parameters, 
then yielding the damping ratio ζ and the fun-
damental mode frequency πω=f 2d d. Because 
of its complexity, particularly when a sum of 
two models is used in the case of two vibrating 
modes, this fitting was done using the genetic 
optimization method known as Differential 
Evolution [14].

For the same set of 50 violin bow blanks in 
Section 4, Fig. 16 is a plot of the damping ratio 
as a function of μ where the range of the mod-
ulus E is mapped to the light-to-dark color map 
with light the smallest values of E and dark 
the largest. The linear least squares fit reveals a 
trend of decreasing damping with increasing μ 
but with the lowest damping usually found in 
higher values of E.

11. ITERATIVE DESIGN PROCEDURE
For a given target bow without hair, measur-
ing its graduations and using the appropriate 
cross-sectional model in Section 5 produces a 
geometrical model of the bow. Unfortunately, 
most desirable targets have a grip winding and 
leather wrap and their mass and centers of mass 
need to be estimated together with a model of 
the head to obtain a rough estimate of the den-
sity ρ from the total mass and balance of the 
stick. This is of course especially important in 
the case of a metal tip. An accurate model of the 
frog section is also required.

At points 20 mm apart along the bow, the 
measured graduations then are used to compute 
the vertical cross-sectional moment of inertia Ix 
at each point, either directly from Eqn. (19) for 
an octagonal bow or Eqn. (24) for a round bow 
after generating a periodic spline model of the 
cross-sectional shape λD( ). These cross-sectional 
models at points along the bending section of 
the bow can then be used to compute weight 
and moment from Eqns. (4) and (5) together 
with the location of the center of mass of section 
between head and frog in Eqn. (7). After add-
ing models of the head and frog section volumes 
and centers of mass, measurements of the total 

Figure 15. Exponentially decaying response of 
unfinished octagonal violin bow with damping 
ratio 0.0021 and fundamental frequency 15.46 Hz.
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stick mass and center of mass then provide two 
equations solved for the density and volume of 
the head. We now have a geometric model of the 
bow and its density estimate ρt.

Using the cantilever setup in Section 6, the 
target is carefully clamped at its forward frog 
position and the static deflection test is per-
formed obtaining the deflection δ under the 
load F just behind the head. This setup using the 
method in Section 10 can also find the funda-
mental mode frequency and perhaps the damp-
ing ratio as well. Solving the corresponding 
tapered curved beam boundary problem results 
in an estimate for the average modulus Et of the 
target bow, and in turn produces an estimate of 

the target bow value of µ
ρ

=
E

t
t

t
2 . Estimating μ for 

a bow blank is a considerably simpler process, 
given the typically rectangular shape of both the 
cross section and the head.

Selecting a blank with a similar value of μ 
as the target then provides the blank values of 
Eb and ρb. Unless attempting to reproduce the 
scaled target cross-sectional shape at every point 
along the stick, the alternative round taper in 
Eqn. (32) or regular octagonal taper in Eqn. (33) 
should be used as the target taper in Eqn. (2) 
and the resulting blank taper Db is obtained.

After roughing out an initial oversized ver-
tical taper Db in the stick, the wood is evaluated 

again in its true rectangular cross-sectional 
shape, generating new estimates for E and ρ. 
This is an especially good time to measure the 
damping ratio as mentioned in Section 10. The 
wood evaluation is repeated in the approxi-
mate square and then octagonal cross-sectional 
states, each time generating a new target taper 
Db for the blank by the same process. Whether 
remaining octagonal or continuing on to a 
round cross section, the iterations continue and 
gradually remove less and less wood as the final 
target is approached. When satisfied with the 
final graduations between the head and frog, 
the method in Section 10 is used to estimate 
the fundamental cantilever mode frequency, fd.  
Adjusting the mass of the head can then be 
done, gradually bringing this frequency closer 
to the target to adjust for differences in density.

This entire iterative process is easier to per-
form before the stick is cambered. If necessary, 
the camber profile for the bow can then be cal-
culated from Eqns. (49) and (50), producing the 
camber that will be simply undone when tight-
ening the hair. The remaining frog, button, and 
grip selection completes the process.

Given the interesting linear stiffness prop-
erty of the Tourte model described in Section 9,  
a linearized stiffness model of the Peccatte 
in Fig. 12 was generated and used as the target 
design for the bows shown in Fig. 13 along with 
the Peccatte in red. These four bows with different  

Figure 16. Variation of damping ratio with μ and including light-to-dark 
point shade mapped to increasing values of the modulus of elasticity, E on 
the interval (16.92, 30.96) in GPa.
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values of μ were only designed to reproduce the 
linear stiffness of the Peccatte model, with the final 
outcome determined by tip geometry, grip, frog, 
and button selections. The consistent and remark-
ably linear stiffness outcomes of these bows is the 
result of this iterative process.

12. CONCLUSIONS
A process for reverse engineering bows has been 
outlined, with wood selection using the parameter

µ
ρ

=
E
2 , and new taper computed from the target, 

guaranteeing that both the mechanical bending, 
mass, and moment properties between the head 
and forward frog position are reproduced exactly. 
Furthermore, the cantilever vibrating mode fre-
quencies can also be reproduced by adjusting the 
head mass. While wood selection based on the 
speed of sound measurement has been helpful, 
it inflates the value of very high-density wood 
while penalizing many floaters that can be turned 
into high-quality bows. The value of the param-
eter μ serves as a direct measure of the stiffness 
and mass properties of the bending section of the 
bow and clearly represents the expected possible 
outcome from a given piece of wood.

Future Work
Obtaining accurate estimates of the modulus and 
density can be improved by making better use of 
the available data. While the mass and center of 
mass measurements are only a function of den-
sity and geometry and the deflection under load 
is only affected by the modulus and geometry, 
the fundamental mode frequency of vibration 
in the cantilever experiment is a function of all 
three, resulting in four equations for the two 
unknowns E and μ. The velocity of sound con-
dition in Eqn. (15) could also be added. In either 
case, this leads to an overdetermined system of 
equations that could be attacked with weighted 
nonlinear least squares that incorporates likely 
experimental measurement error.

NOMENCLATURE

E,	� modulus of elasticity in GPa
ρ, rho	� mass density in grams per cm3 or its 

numerical equivalent of dimensionless 
specific gravity

μ, mu 	� wood selection parameter in GPa
c,	� speed of sound in m/s
Ls ,	� arc length of bow between head and 

forward frog position in mm
D,	� diameter of perfectly round or regular 

octagonal cross section in mm
wʹ,	� weight of the stick between the head 

and forward frog position in grams
mʹ,	� first moment of weight of the stick 

between the head and forward frog 
position, with respect to that position 
in gram mm

iʹ,	� second moment of weight of the stick 
between the head and forward frog 
position, with respect to that position 
in gram mm2.

xm,	� horizontal moment arm of cross-
sectional area with respect to the for
ward frog position in mm

cm,	� horizontal distance of center of mass 
of bending section from forward frog 
position in mm

w,	� width of rectangular cross section in mm
h,	� thickness of rectangular cross section in 

mm
V,	� vertical thickness of octagonal or spline 

cross section in mm
U,	� upper thickness of octagonal or spline 

cross section in mm
H,	� horizontal thickness of octagonal or 

spline cross section in mm
L,	� lower thickness of octagonal or spline 

cross section in mm
λ,	� angle clockwise positive from vertical 

for oval spline model in radians
A,	� cross-sectional area in mm2

Ix, I	� vertical cross-sectional moment of 
inertia in mm4

Iy, J	� horizontal cross-sectional moment of 
inertia in mm4

σ,	� arc length along the bow measured 
from the forward frog position in mm

σ( )∅ ,	� tangent angle as function of arc length 
under cantilever load F in radians

σ( )∅0 ,	� tangent angle as function of arc length 
of initial camber in radians

F,	� cantilever load in kg
M,	� distance of load from cantilever support 

in mm
y,	� y coordinate of neutral axis under 

cantilever load in mm
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y0,	� y coordinate of neutral axis of initial 
camber in mm

δ,	� vertical deflection of beam at the 
cantilever load in mm

U ,	� elastic strain energy under load
Ω,	� potential energy of the external load
Π,	� total potential energy
DR ,	� round taper with equivalent Ix to target 

design in mm
s,	� arc length along the bow measured 

from just behind the head in mm
a,	� perpendicular distance from neutral 

axis at head to line of action of the hair 
in mm

b,	� perpendicular distance from neutral 
axis at frog to line of action of the hair 
in mm

θ( )s ,	� tangent angle as function of arc length 
under hair tension T in radians

θ ( )s0 ,	� tangent angle as function of arc length 
of initial camber in radians

LT ,	� arc length coordinate of frog under hair 
tension in mm

L0 ,	� arc length coordinate of horizontal 
tangent to neutral axis in mm

T,	� hair tension in kg
T,	� maximum hair tension producing a 

linear neutral axis in kg
LS,	� arc length coordinate of frog at max

imum hair tension T with linear neutral 
axis

β,	� constant tangent angle at maximum 
hair tension T

l0 ,	� horizontal distance along hair with zero 
tension in mm

l,	� horizontal distance along hair under 
tension T in mm

( )x s0 ,	� x coordinate of neutral axis at initial 
camber in mm

( )y s0 ,	� y coordinate of neutral axis at initial 
camber in mm

V L( )0 ,	� vertical thickness of stick at L0  
in mm

ε,	� distance between bottom of the stick 
and table with finished frog and head 
in mm

X0,	� damping model amplitude
X1 ,	� damping model offset
φ,	� damping model phase
ζ,	� zeta dimensionless damping ratio

ωn,	� undamped natural angular frequency in 
rad/s

ωd ,	� damped natural angular frequency in 
rad/s

fd ,	� fundamental mode frequency in Hz
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