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Abstract
Modern methods provide extensive data on the shape of fi ne old violins. This should allow makers to copy the 
arches, for example, of old violins—except that a modern maker would not want to copy exactly the arch of an old 
instrument. The arches of old instruments are asymmetrical, and have asymmetrical outlines and bottom edges which 
are not fl at. The modern maker wants to make a symmetrical arch, with a symmetrical outline, and fl at bottom edges. 
So the problem is to use the data from an old asymmetrical instrument to somehow construct the arches of a new 
symmetrical instrument. In this article, we describe a construction method that starts from computed tomography 
(CT) scan data, and (1) is strongly based on data from an instrument, (2) completely defi nes the arch from edge to 
edge, (3) involves minimal human choice, and (4) allows controlled alteration of the arch. The method produces a 3D 
model of a violin arch. The model can be used, for example, to drive a CNC router or 3D printer, to cut cross-section 
templates (“quinte”), or to be part of modeling the acoustic behavior of an instrument.

OUTLINE

In this article, we describe the arch as built in 
three pieces: a central part, the edge, and a fi ll 
section (Fig. 1).

The edge can be designed very simply using 
standard computer-aided design (CAD) tools. 
The central part is the real concern. The fi ll 
section must smoothly bridge the gap between 
the central part and the edge. Designing the fi ll 
section is diffi cult, but has no great signifi cance, 
and will not be discussed in detail.

An important concept is what we call the 
“low curve”. The arch descends from the center 
toward the edge. Before it reaches the edge, it 
turns up slightly. Look at the lowest points (Fig. 2); 
the collection of all these lowest points is the 
“low curve”. In our description, the low curve is 
the edge of the central part of the arch. Outside 
the low curve, the “fi ll section” begins.

Although our approach is not the only pos-
sible one, we think of the central part of the 
arch as built from cross-section curves sitting 
on top of the low curve. For readability, see 
Figure 3, which shows cross-section curves at 
30-mm intervals. The actual spacing used was 
2 mm.

Defi ning these cross-section curves is the 
real meat of the method. The method defi nes 
a family of curves with enough parameters 

(adjustabilities) to describe the cross-section 
data of a violin, but not too many to be man-
ageable. We fi nd these parameters for the old 
instrument (“analysis”), and build a new arch 
using these parameters (“synthesis”).

THE DATA

We begin with a CT scan of a fi ne violin.1 The 
scan data consists of X-ray densities of little 
cubes about half a millimeter on each side. No-
tice that we usually describe violin dimensions 
to 0.1 mm; the data we are starting with here 

Figure 1. Edge, fi  ll, and central parts.
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is in some sense fi ve times coarser! Figure 4 
shows a cross section including the fi ngerboard. 
Figure 5 is a close-up of the data in the small 
rectangle. Each square is about 1/2 mm on a 
side. Figure 6 shows the values along the vertical 
line given in Figure 4. Adjacent points are sep-
arated by about 0.5 mm. Note the complicated 
behavior at the edges of the bottom, top, and 

fi ngerboard. The point here is that getting fi ne 
resolution measurements from CT data is not a 
simple matter.

The fi rst step in using the CT data is to ex-
tract the surfaces of the instrument—inside and 
out. This is a substantial operation; it was per-
formed for me by Biomedical Modeling Inc. of 
Boston, MA, USA. Biomedical Modeling chose 
to use the stereolithography (STL) format for 
the extracted surfaces.

The basic idea is that the surface is assumed 
to be at a certain X-ray density (“threshold”). 
Choosing a different threshold will cause the 
surface to move in or out, as shown in Figure 7.

The shape of an arch in the extracted sur-
face will vary very little with change of thresh-
old, because arches are fairly fl at curves. For 
example, Figure 8 shows two curves. The upper 
curve is offset by 1/2 mm from the lower. But, 
if we pull the upper one down by 1/2 mm to 
make the ends coincide, then the maximum dis-
tance between the two curves is only 0.035 mm. 
In other words, the two curves have nearly the 
same shape.

Figure 2. The “low  curve”.

Figure 3. Cross se ctions sitting on the low curve.

Figure 4. Cross se ction including the fi ngerboard.
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On the other hand, a thickness found from 
the extracted surfaces will depend on the thresh-
old, and will typically require a correction to 
make it match reality.

The following analysis works entirely off 
the STL fi le. In one place, a thickness (gradua-
tion) is involved, and a correction will be explic-
itly made. Otherwise, only shapes are involved, 
and no correction is made.

ANALYSIS OF CROSS SECTIONS

Figure 9 shows the outside cross section of the 
back, 75 mm above the tail end. The view is 
looking up from the tail end toward the scroll. 
The instrument is turned over, with its back up, 
so the bass side is on the right. The points are 
taken from the STL fi le at 1-mm intervals, and 
have been moved so that the lowest points are 
on the base line, equally spaced on the two sides. 

Figure 5. Close-up  of the data.

Figure 6. Values a long the vertical line.

Figure 7. Differen t surfaces from different thresholds.
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The scales in the two directions are different so 
that the curve can be seen well.

In the following analysis, only the data on 
the bass (right) side is used, in the hope that it is 
less distorted by the sound post.

The Curtate Cycloid
One candidate that has been proposed to describe 
the cross-section curves is the curtate cycloid. 
Figure 10 is the result when we approximate the 
data (bass side only) with a curtate cycloid.

In each case, the cycloid is centered with low 
ends at the low ends of the data, and is adjusted 
to give the best possible fi t to the data (the bass 
side data).

We see that the cycloid gives a reasonable 
fi t to the data near the bridge and in the upper 
bout, but not a good fi t in the lower bout.

Also, as we said in the abstract, we want 
a method that allows alteration of the arch. 
But, the cycloid is completely determined by its 
height and width; once the height and width 
are set, the curve cannot, for example, be made 
more or less “plump”.

More Flexible Curves
This section defi nes a family of curves, which we 
call “B3 curves”. A B3 curve has three parame-
ters (adjustabilities), rather than the two of cur-
tate cycloids, and is therefore more “fl exible”.

This section is the only section of this arti-
cle containing actual algebra. This section needs 
to be read only if the reader actually wants to 

implement the method of the article. Otherwise, 
the reader can skip this section; the article is in-
tended to be readable without this section.

First, we need to defi ne the coordinates we 
are using (Fig. 11). The curves we are defi ning 
are varieties of Bèzier curves. Rather than refer-
ring to the literature, we defi ne the curves com-
pletely here. Let
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then, given fi ve points (P1, P2, P3, P4, and P5) in 
the xz plane and fi ve weights (w1, w2, w3, w4, 
and w5), we have the 5-point parametric Bèzier 
curve:
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The curves we are looking at are symmetrical 
around x = 0, based on the line z = 0, and fl at 
at the ends, where they come down to the line 
z = 0. For such curves, we have

Figure 8. Offset c urves.

Figure 9. Seventy- fi ve millimeter above the end.
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Figure 10. Approxi mation by a cycloid at 75, 166, and 288 mm.

Figure 11. Defi nit ion of coordinates.
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So, here, we have a family of curves with the right 
general shape, with fi ve parameters: width, x4, z3, 
w3, and w4. After considerable trials, I realized 
that this was too many parameters. It turned out 
that taking w3 = 1 and w4 = 5/4 reduced the num-
ber of parameters to three and still left enough 
fl exibility to give a good representation of the 
cross-section data. This choice of w3 and w4 also 
makes z3 = three times the height of the curve, 
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Figure 12. Various  values of “bulge.”

Figure 13. B3 and  cycloid curves.

which is very convenient. The x4 parameter in 
some sense controls the bulginess of the curve, so 
we defi ne bulge = x4/width. Legitimate values of 
bulge are between 0 and 1.

Thus, we have a family of curves, which I 
call B3 curves. For parameters height, width, and 
bulge, we set z3 = 3 × height, x4 = bulge × width, 
and defi ne P1, P2, P3, P4, and P5 and w1 = 1, w2 = 
5/4, w3 = 1, w4 = 5/4, and w5 = 1 according to the 
previous formulas. Then, the fi ve-point Bèzier de-
fi ned previously is the curve.

Using the B3 Curves
The previous section defi nes a family of “B3 
curves”. For a given height, width, and a third 
number called “bulge”, we get a curve. Figure 

12 shows how these curves look for various val-
ues of bulge. We compare the fi t of the B3 curves 
and the cycloid in Figure 13

In each case, the width of the B3 curve is 
fi xed, and the height and bulge are adjusted to 
give the best possible fi t to the data. Similarly, 
the width of the cycloid is fi xed and the height 
is adjusted. The best-fi t B3 and cycloid curves 
are shown. We see that the B3 curve fi ts the data 
better than the cycloid. So in the rest of this 
work, we use only B3 curves.

ANALYSIS

We now begin the actual “analysis” of the data: 
For cross sections from 30 to 324 mm, measured 
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from the tail of the instrument at intervals of 
2 mm, we fi t a B3 curve to the bass side cross-
section data. (For about a dozen cross sections, 
the edge of the instrument is worn enough that 
there is no “lowest point” at the edge, and so, it 
is not possible to perform the analysis in the way 
we are doing it. So, there are gaps in the data for 
these cross sections.) For each cross section, we 
have a width, a height, and a bulge (Fig. 14).

Figure 15 shows the height, width, and bulge 
of the cross sections (shown against the out-
line of the instrument). Note that the low curve 
(width of the cross sections) pushes slightly into 
the corners.

The cross-section curves sit on the “low 
curve”. So, we need data about the low curve. 
The widths of the cross-section curves, shown 
previously, give the location of the low curve, 
as seen from above. The height of the low 
curve is the thickness of the plate under these 
width points. In Figure 16 we are measuring a 

thickness from the STL fi le, so a thickness cor-
rection is applied.

The red points are the thicknesses read from 
the STL fi le. Subtracting a correction2 of 0.6 mm 
gives the green points; these are the heights of 
the low curve. The outline of the instrument is 
shown for comparison. The fi gure shows that the 
thickness at the low curve is about 1 mm greater 
in the C bout than in the outer bouts.

Getting the B3 parameters and the low 
curve heights constitutes the “analysis” of the 
old violin.

SYNTHESIS

Smoothing
For each cross section, from 30 to 324 mm 
above the end of the instrument, at 2-mm inter-
vals (with some gaps), we have a height, width, 
and bulge. These defi ne a B3 curve. And, we 
have the low curve that the B3 curves sit on. So 

Figure 14. B3 Curv es fi tted to cross-section data.
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Figure 15. Height,  width, and bulge of the cross sections.

Figure 16. Low cur ve heights with correction.
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we could just put all these B3 curves in place to 
form an arch. But, if we do this, we get a jagged 
surface. The center line appears as shown in 
Figure 17.

The problem is that each cross section, and 
each low curve height, was found independently, 
with noise and imprecision from the CT data, 
the STL conversion, and so on. They do not fi t 
together into a smooth surface. So, we have to 
smooth things out.

Figure 18 shows smoothed versions of the 
B3 height, width, and bulge, and the height of 
the low curve. The outline of the instrument has 
been included for orientation.

Notice that the width data projects slightly 
into the corners, whereas the smooth width 
curve does not. I can produce a smooth width 
curve that does project into the corners like 
the data, but if I do, these methods, including 
various modifi cations and extensions, produce 
arches with unacceptable lumpiness.

Building the Arch
We now have the following:

• smoothed  low curve
• smoothed  B3 width
• smoothed  B3 height
• smoothed  B3 bulge

We can now build an arch. From the smoothed 
B3 height, width and bulge, we build cross sec-
tions from 10 to 342 mm (above the tail of the 
instrument) at intervals of 2 mm. We put these 
on the smoothed low curve. This forms the cen-
tral part of the arch.

We look at the lengthwise sections as a 
check. The section is 45 mm from the center line 
as shown in Figure 19.

The sections, from the center line all the way 
out to the edge, are as expected, without any 
unacceptable lumpiness.

The edge and fi ll parts are added to the cen-
tral part to form the complete arch of the plate.

POSSIBLE DIFFICULTIES

Slight variations in the smoothing of the curves 
sometimes lead to a surface with an unacceptable 
kink. One can check for a kink by looking at the 
lengthwise sections. Figure 20 shows an exam-
ple of a kink. This is a lengthwise section 45 mm 
from the center line, with points every 2 mm. The 
remedy for this problem is to fi t a smooth curve 
to the section, as demonstrated in Figure 21. The 
bulge is then modifi ed to force the cross sections 
to pass through this smoothed curve.

ALTERING AN ARCH

This method allows for altering an arch. Sup-
pose we have an arch built with these methods 
and we want it to be slightly plumper in the up-
per bout, about 288 mm above the tail of the in-
strument. We increase the bulge at 288, enough 
to add about 1/2 mm there, and taper the altera-
tion off to zero (Fig. 22).

Using the modifi ed bulge, with the other 
pieces unchanged, we get a new arch. Figure 
23 is a comparison between the altered and the 
original arch.

Figure 17. Jagged  center line from un-smoothed data.
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Figure 19. Section  45 mm from the center line.

Figure 18. Smooth  versions of the B3 height, width, and bulge, and the 
low curve height.
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Figure 20. Section  45 mm from the center line showing kink.

ADAPTING TO A DIFFERENT 
OUTLINE

The previous procedure used the low curve from 
the original data (cleaned up and made smooth 
and symmetric). This goes along with using the 
outline from the original data (also cleaned up 
and made smooth and symmetric).

If one wants to use the arch data from the 
old instrument, but on a new instrument with a 
substantially different outline, the 2D low curve 

needs to be adapted to the new outline. Some ex-
amples of recipes that might be used to construct 
an appropriate 2D curve are as follows:

•  The low  curve lies over the inner edge of 
the linings;

• The low  curve lies 6 mm from the edge;
•  The low  curve is 6 mm from the edge in 

the lower bout, 4 mm from the edge in the 
C bouts, and 8 mm from the edge in the 
upper bout.

Figure 21. Smooth  curve fi tted to the kinked section.
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Figure 22. The alt ered bulge.

Figure 23. Differe nces between the altered arch and the fi rst arch.

TOOLS AND TECHNIQUES

The major tools used were Mathematica and 
Rhino. Mathematica is a sophisticated and power-
ful tool for performing mathematical calculations, 
both symbolic and numerical. Unfortunately, it 

is diffi cult to use, partly because it is poorly doc-
umented. Rhino is a 3D CAD tool. An add-on, 
RhinoCAM, generates instructions for a com-
puter numerical control (CNC) router.

I wrote functions in Mathematica for read-
ing CT data (DICOM fi les) and STL fi les, and 
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developed methods for transferring data back 
and forth between Mathematica and Rhino.

The calculations were performed in Math-
ematica. After the cross-section curves and low 
curve were found in Mathematica, they were 
transferred to Rhino, where the actual surface was 
produced. The edge was produced completely in 
Rhino. The basic idea of the fi ll surface is to invent 
a function something like a temperature function, 
moving from one temperature (height) at the low 
curve to a higher temperature (height) at the edge.

All curves are Bèzier curves of appropriate 
degree. A curve is “fi tted” to data points by ad-
justing the Bèzier parameters (control points and 
weights) to minimize the sum of the squares of 
the distances from the data points to the curves. 
Specifi cally,

•  The edge c urves (upper, C, and lower 
bouts) are order 5 Bèzier curves (5 con-
trol points). The curves are fi tted to data 
points consisting of the STL points where 
the normal (perpendicular to the surface) 
is close to the horizontal.

•  The smoothe d B3 width is an order 9 
Bèzier curve (refer to Fig. 18). The data 
points in the corners were omitted, and 
the points in the C bout were empha-
sized by weighting them heavily.

•  The smoothed  low curve height is an or-
der 5 Bèzier curve. It was not fi tted to the 
data; the curve parameters were adjusted 
by hand (“eyeballed”) instead.

•  There is a tricky point about adjusting the 
B3 height: The curve we care about is not 
the B3 height itself, but the actual center 
line height of the arch, which is the sum 
of the B3 height and the low curve height, 
because the cross-section curves sit on the 
low curve. So, the process is as follows:

  •  Add the B3 he ight data (the points in 
the fi rst part of Fig. 18) to the height of 
the smoothed low curve (just found).

  •  Fit an order  6 Bèzier curve to the re-
sulting heights.

  •  Subtract the h eight of the smoothed low 
curve, giving the smoothed B3 height.

•  The smoothed b ulge curve is an order 
8 Bèzier curve. Some of the data points are 
deleted, to prevent the fi tting process from 
producing a curve with very sharp turns.

•  The smoothed cu rve fi tted to the kinked 
section is an order 7 Bèzier curve.

If you are having diffi culty implementing this 
method, you are invited to contact the author.

NOTES

1. Because these da ta have not been publicly 
released, the violin will not be identifi ed.

2. This correction  is based on an analysis 
of a CT scan of a sample violin (not the fi ne 
instrument which is the subject of the analysis) 
with marked locations of known thickness.




